Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 4.593
Filtrar
1.
J Virol ; 98(2): e0149423, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38294251

RESUMO

Influenza B viruses (IBV) cocirculate with influenza A viruses (IAV) and cause periodic epidemics of disease, yet antibody and cellular responses following IBV infection are less well understood. Using the ferret model for antisera generation for influenza surveillance purposes, IAV resulted in robust antibody responses following infection, whereas IBV required an additional booster dose, over 85% of the time, to generate equivalent antibody titers. In this study, we utilized primary differentiated ferret nasal epithelial cells (FNECs) which were inoculated with IAV and IBV to study differences in innate immune responses which may result in differences in adaptive immune responses in the host. FNECs were inoculated with IAV (H1N1pdm09 and H3N2 subtypes) or IBV (B/Victoria and B/Yamagata lineages) and assessed for 72 h. Cells were analyzed for gene expression by quantitative real-time PCR, and apical and basolateral supernatants were assessed for virus kinetics and interferon (IFN), respectively. Similar virus kinetics were observed with IAV and IBV in FNECs. A comparison of gene expression and protein secretion profiles demonstrated that IBV-inoculated FNEC expressed delayed type-I/II IFN responses and reduced type-III IFN secretion compared to IAV-inoculated cells. Concurrently, gene expression of Thymic Stromal Lymphopoietin (TSLP), a type-III IFN-induced gene that enhances adaptive immune responses, was significantly downregulated in IBV-inoculated FNECs. Significant differences in other proinflammatory and adaptive genes were suppressed and delayed following IBV inoculation. Following IBV infection, ex vivo cell cultures derived from the ferret upper respiratory tract exhibited reduced and delayed innate responses which may contribute to reduced antibody responses in vivo.IMPORTANCEInfluenza B viruses (IBV) represent nearly one-quarter of all human influenza cases and are responsible for significant clinical and socioeconomic impacts but do not pose the same pandemic risks as influenza A viruses (IAV) and have thus received much less attention. IBV accounts for greater severity and deaths in children, and vaccine efficacy remains low. The ferret can be readily infected with human clinical isolates and demonstrates a similar course of disease and immune responses. IBV, however, generates lower antibodies in ferrets than IAV following the challenge. To determine whether differences in initial innate responses following infection may affect the development of robust adaptive immune responses, ferret respiratory tract cells were isolated, infected with IAV/IBV, and compared. Understanding the differences in the initial innate immune responses to IAV and IBV may be important in the development of more effective vaccines and interventions to generate more robust protective immune responses.


Assuntos
Imunidade Adaptativa , Células Epiteliais , Furões , Imunidade Inata , Vírus da Influenza A , Vírus da Influenza B , Interferons , Mucosa Nasal , Animais , Criança , Humanos , Anticorpos Antivirais/análise , Anticorpos Antivirais/biossíntese , Anticorpos Antivirais/imunologia , Modelos Animais de Doenças , Células Epiteliais/citologia , Células Epiteliais/imunologia , Células Epiteliais/virologia , Furões/imunologia , Furões/virologia , Vírus da Influenza A/classificação , Vírus da Influenza A/crescimento & desenvolvimento , Vírus da Influenza A/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza B/classificação , Vírus da Influenza B/crescimento & desenvolvimento , Vírus da Influenza B/imunologia , Vacinas contra Influenza , Influenza Humana/virologia , Interferons/imunologia , Mucosa Nasal/citologia , Mucosa Nasal/imunologia , Mucosa Nasal/virologia , Linfopoietina do Estroma do Timo/genética , Linfopoietina do Estroma do Timo/imunologia , Células Cultivadas
4.
JAMA Pediatr ; 178(2): 176-184, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38109102

RESUMO

Importance: Influenza virus infection during pregnancy is associated with severe maternal disease and may be associated with adverse birth outcomes. Inactivated influenza vaccine during pregnancy is safe and effective and can protect young infants, but recent evidence, particularly after the 2009 novel influenza A (H1N1) pandemic, is limited. Objective: To evaluate the effectiveness of influenza vaccination during pregnancy against laboratory-confirmed influenza-associated hospitalizations and emergency department (ED) visits in infants younger than 6 months. Design, Setting, and Participants: This was a prospective, test-negative case-control study using data from the New Vaccine Surveillance Network from the 2016 to 2017 through 2019 to 2020 influenza seasons. Infants younger than 6 months with an ED visit or hospitalization for acute respiratory illness were included from 7 pediatric medical institutions in US cities. Control infants with an influenza-negative molecular test were included for comparison. Data were analyzed from June 2022 to September 2023. Exposure: Maternal influenza vaccination during pregnancy. Main Outcomes and Measures: We estimated maternal vaccine effectiveness against hospitalizations or ED visits in infants younger than 6 months, those younger than 3 months, and by trimester of vaccination. Maternal vaccination status was determined using immunization information systems, medical records, or self-report. Vaccine effectiveness was estimated by comparing the odds of maternal influenza vaccination 14 days or more before delivery in infants with influenza vs those without. Results: Of 3764 infants (223 with influenza and 3541 control infants), 2007 (53%) were born to mothers who were vaccinated during pregnancy. Overall vaccine effectiveness in infants was 34% (95% CI, 12 to 50), 39% (95% CI, 12 to 58) against influenza-associated hospitalizations, and 19% (95% CI, -24 to 48) against ED visits. Among infants younger than 3 months, effectiveness was 53% (95% CI, 30 to 68). Effectiveness was 52% (95% CI, 30 to 68) among infants with mothers who were vaccinated during the third trimester and 17% (95% CI, -15 to 40) among those with mothers who were vaccinated during the first or second trimesters. Conclusions and Relevance: Maternal vaccination was associated with reduced odds of influenza-associated hospitalizations and ED visits in infants younger than 6 months. Effectiveness was greatest among infants younger than 3 months, for those born to mothers vaccinated during the third trimester, and against influenza-associated hospitalizations.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Influenza Humana , Lactente , Gravidez , Feminino , Humanos , Criança , Influenza Humana/prevenção & controle , Influenza Humana/epidemiologia , Vacinas contra Influenza/administração & dosagem , Estudos de Casos e Controles , Estudos Prospectivos , Vírus da Influenza A Subtipo H1N1/imunologia , 60530 , Eficácia de Vacinas , Hospitalização , Vacinação , Mães , Serviço Hospitalar de Emergência
5.
ACS Appl Mater Interfaces ; 15(30): 35872-35883, 2023 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-37467383

RESUMO

Accurate and rapid detection of the influenza A virus (FluA) and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) can effectively control their spread. We developed a colorimetric and fluorescent dual-functional two-channel immunochromatographic assay (ICA) biosensor to simultaneously detect the above-mentioned viruses. A unique two-dimensional Ti3C2-QD immunoprobe was established by adsorbing dense quantum dots (QDs) onto the light green monostromatic Ti3C2 MXene surface, resulting in light green colorimetric and superior fluorescence signals and guaranteeing high sensitivity, stability, and excellent liquidity for ICA detection. Rapid visual screening for FluA and SARS-CoV-2 infections was applicable via a green colorimetric signal. Sensitive and quantitative detection of viruses in their early stages of infection was performed by using the fluorescence signal. Our proposed Ti3C2-QD-ICA biosensor can simultaneously detect 1 ng/mL or 2.4 pg/mL FluA and 1 ng/mL or 6.2 pg/mL SARS-CoV-2 via its colorimetric or fluorescence signals, respectively, with a short testing time (20 min), good reproducibility, specificity, and accuracy. In addition, this method demonstrated sensitivity higher than that of the conventional AuNP-based ICA method in throat swab samples. Hence, our proposed Ti3C2-QD-ICA method can be potentially applied for the rapid, ultrasensitive, and multiplex detection of respiratory viruses.


Assuntos
Imunoensaio , Vírus da Influenza A Subtipo H1N1 , SARS-CoV-2 , Imunoensaio/instrumentação , Imunoensaio/métodos , Reprodutibilidade dos Testes , Corantes Fluorescentes/química , Pontos Quânticos , Nanoestruturas/química , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H1N1/isolamento & purificação , SARS-CoV-2/imunologia , SARS-CoV-2/isolamento & purificação , Titânio/química , Carbono/química , Humanos , Influenza Humana/diagnóstico , COVID-19/diagnóstico
6.
Virulence ; 13(1): 1558-1572, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36082929

RESUMO

Influenza A virus (IAV) infection poses a substantial challenge and causes high morbidity and mortality. Exacerbated pulmonary inflammatory responses are the major causes of extensive diffuse alveolar immunopathological damage. However, the relationship between the extent of cytokine storm, neutrophils/macrophages infiltration, and different IAV infection dose and time still needs to be further elucidated, and it is still unclear whether the signal transduction and transcriptional activator 1/3 (STAT1/3) signalling pathway plays a beneficial or detrimental role. Here, we established a mouse model of high- and low-dose pH1N1 infection. We found that pH1N1 infection induced robust and early pathological damage and cytokine storm in an infection dose- and time-dependent manner. High-dose pH1N1 infection induced massive and sustained recruitment of neutrophils as well as a higher ratio of M1:M2, which may contribute to severe lung immunopathological damage. pH1N1 infection activated dose- and time-dependent STAT1 and STAT3. Inhibition of STAT1 and/or STAT3 aggravated low-dose pH1N1 infection, induced lung damage, and decreased survival rate. Appropriate activation of STAT1/3 provided survival benefits and pathological improvement during low-dose pH1N1 infection. These results demonstrate that high-dose pH1N1 infection induces robust and sustained neutrophil infiltration, imbalanced macrophage polarization, excessive and earlier cytokine storm, and STAT1/3 activation, which are associated with pulmonary dysregulated proinflammatory responses and progress of acute lung injury. The severe innate immune responses may be the threshold at which protective functions give way to immunopathology, and assessing the magnitude of host innate immune responses is necessary in adjunctive immunomodulatory therapy for alleviating influenza-induced pneumonia.


Assuntos
Imunidade Inata , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Síndrome da Liberação de Citocina , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Pulmão/imunologia , Pulmão/patologia , Lesão Pulmonar/etiologia , Lesão Pulmonar/patologia , Camundongos , Fator de Transcrição STAT1/metabolismo , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais
7.
Proc Natl Acad Sci U S A ; 119(32): e2205797119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35914171

RESUMO

Narcolepsy type 1 (NT1), a disorder caused by hypocretin/orexin (HCRT) cell loss, is associated with human leukocyte antigen (HLA)-DQ0602 (98%) and T cell receptor (TCR) polymorphisms. Increased CD4+ T cell reactivity to HCRT, especially DQ0602-presented amidated C-terminal HCRT (HCRTNH2), has been reported, and homology with pHA273-287 flu antigens from pandemic 2009 H1N1, an established trigger of the disease, suggests molecular mimicry. In this work, we extended DQ0602 tetramer and dextramer data to 77 cases and 44 controls, replicating our prior finding and testing 709 TCRs in Jurkat 76 T cells for functional activation. We found that fewer TCRs isolated with HCRTNH2 (∼11%) versus pHA273-287 or NP17-31 antigens (∼50%) were activated by their ligand. Single-cell characterization did not reveal phenotype differences in influenza versus HCRTNH2-reactive T cells, and analysis of TCR CDR3αß sequences showed TCR clustering by responses to antigens but no cross-peptide class reactivity. Our results do not support the existence of molecular mimicry between HCRT and pHA273-287 or NP17-31.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Narcolepsia , Orexinas , Receptores de Antígenos de Linfócitos T , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana , Narcolepsia/imunologia , Narcolepsia/fisiopatologia , Orexinas/metabolismo , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/imunologia , Proteínas Virais/imunologia
8.
J Virol ; 96(15): e0076522, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35862681

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) represent two highly transmissible airborne pathogens with pandemic capabilities. Although these viruses belong to separate virus families-SARS-CoV-2 is a member of the family Coronaviridae, while IAV is a member of the family Orthomyxoviridae-both have shown zoonotic potential, with significant animal reservoirs in species in close contact with humans. The two viruses are similar in their capacity to infect human airways, and coinfections resulting in significant morbidity and mortality have been documented. Here, we investigate the interaction between SARS-CoV-2 USA-WA1/2020 and influenza H1N1 A/California/04/2009 virus during coinfection. Competition assays in vitro were performed in susceptible cells that were either interferon type I/III (IFN-I/-III) nonresponsive or IFN-I/-III responsive, in addition to an in vivo golden hamster model. We find that SARS-CoV-2 infection does not interfere with IAV biology in vivo, regardless of timing between the infections. In contrast, we observe a significant loss of SARS-CoV-2 replication following IAV infection. The latter phenotype correlates with increased levels of IFN-I/-III and immune priming that interferes with the kinetics of SARS-CoV-2 replication. Together, these data suggest that cocirculation of SARS-CoV-2 and IAV is unlikely to result in increased severity of disease. IMPORTANCE The human population now has two circulating respiratory RNA viruses with high pandemic potential, namely, SARS-CoV-2 and influenza A virus. As both viruses infect the airways and can result in significant morbidity and mortality, it is imperative that we also understand the consequences of getting coinfected. Here, we demonstrate that the host response to influenza A virus uniquely interferes with SARS-CoV-2 biology although the inverse relationship is not evident. Overall, we find that the host response to both viruses is comparable to that to SARS-CoV-2 infection alone.


Assuntos
COVID-19 , Coinfecção , Apresentação Cruzada , Vírus da Influenza A Subtipo H1N1 , Influenza Humana , SARS-CoV-2 , Replicação Viral , Animais , COVID-19/imunologia , COVID-19/mortalidade , COVID-19/virologia , Coinfecção/imunologia , Coinfecção/virologia , Apresentação Cruzada/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Influenza Humana/imunologia , Influenza Humana/virologia , Interferons/imunologia , Mesocricetus/imunologia , Mesocricetus/virologia , SARS-CoV-2/crescimento & desenvolvimento , SARS-CoV-2/imunologia , Replicação Viral/imunologia
9.
MMWR Morb Mortal Wkly Rep ; 71(10): 365-370, 2022 Mar 11.
Artigo em Inglês | MEDLINE | ID: mdl-35271561

RESUMO

In the United States, annual vaccination against seasonal influenza is recommended for all persons aged ≥6 months except when contraindicated (1). Currently available influenza vaccines are designed to protect against four influenza viruses: A(H1N1)pdm09 (the 2009 pandemic virus), A(H3N2), B/Victoria lineage, and B/Yamagata lineage. Most influenza viruses detected this season have been A(H3N2) (2). With the exception of the 2020-21 season, when data were insufficient to generate an estimate, CDC has estimated the effectiveness of seasonal influenza vaccine at preventing laboratory-confirmed, mild/moderate (outpatient) medically attended acute respiratory infection (ARI) each season since 2004-05. This interim report uses data from 3,636 children and adults with ARI enrolled in the U.S. Influenza Vaccine Effectiveness Network during October 4, 2021-February 12, 2022. Overall, vaccine effectiveness (VE) against medically attended outpatient ARI associated with influenza A(H3N2) virus was 16% (95% CI = -16% to 39%), which is considered not statistically significant. This analysis indicates that influenza vaccination did not reduce the risk for outpatient medically attended illness with influenza A(H3N2) viruses that predominated so far this season. Enrollment was insufficient to generate reliable VE estimates by age group or by type of influenza vaccine product (1). CDC recommends influenza antiviral medications as an adjunct to vaccination; the potential public health benefit of antiviral medications is magnified in the context of reduced influenza VE. CDC routinely recommends that health care providers continue to administer influenza vaccine to persons aged ≥6 months as long as influenza viruses are circulating, even when VE against one virus is reduced, because vaccine can prevent serious outcomes (e.g., hospitalization, intensive care unit (ICU) admission, or death) that are associated with influenza A(H3N2) virus infection and might protect against other influenza viruses that could circulate later in the season.


Assuntos
Vírus da Influenza A Subtipo H3N2/imunologia , Vírus da Influenza A/imunologia , Vacinas contra Influenza/administração & dosagem , Influenza Humana/prevenção & controle , Eficácia de Vacinas , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Humanos , Lactente , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza B/imunologia , Pessoa de Meia-Idade , Vigilância da População , Estações do Ano , Estados Unidos/epidemiologia , Vacinação
10.
J Virol ; 96(7): e0165221, 2022 04 13.
Artigo em Inglês | MEDLINE | ID: mdl-35289635

RESUMO

Commercial influenza virus vaccines often elicit strain-specific immune responses and have difficulties preventing illness caused by antigenically drifted viral variants. In the last 20 years, the H3N2 component of the annual vaccine has been updated nearly twice as often as the H1N1 component, and in 2019, a mismatch between the wild-type (WT) H3N2 vaccine strain and circulating H3N2 influenza strains led to a vaccine efficacy of ∼9%. Modern methods of developing computationally optimized broadly reactive antigens (COBRAs) for H3N2 influenza viruses utilize current viral surveillance information to design more broadly reactive vaccine antigens. Here, 7 new recombinant hemagglutinin (rHA) H3 COBRA hemagglutinin (HA) antigens were evaluated in mice. Subsequently, two candidates, J4 and NG2, were selected for further testing in influenza-preimmune animals based on their ability to elicit broadly reactive antibodies against antigenically drifted H3N2 viral isolates. In the preimmune model, monovalent formulations of J4 and NG2 elicited broadly reactive antibodies against recently circulating H3N2 influenza viruses from 2019. Bivalent mixtures of COBRA H1 and H3 rHA, Y2 + J4, and Y2 + NG2 outperformed multiple WT H1+H3 bivalent rHA mixtures by eliciting seroprotective antibodies against H1N1 and H3N2 isolates from 2009 to 2019. Overall, the newly generated COBRA HA antigens, namely, Y2, J4, and NG2, had the ability to induce broadly reactive antibodies in influenza-naive and preimmune animals in both monovalent and bivalent formulations, and these antigens outperformed H1 and H3 WT rHA vaccine antigens by eliciting seroprotective antibodies against panels of antigenically drifted historical H1N1 and H3N2 vaccine strains from 2009 to 2019. IMPORTANCE Standard-of-care influenza virus vaccines are composed of a mixture of antigens from different influenza viral subtypes. For the first time, lead COBRA H1 and H3 HA antigens, formulated as a bivalent vaccine, have been investigated in animals with preexisting immunity to influenza viruses. The cocktail of COBRA HA antigens elicited more broadly reactive anti-HA antibodies than those elicited by a comparator bivalent wild-type HA vaccine against H1 and H3 influenza viruses isolated between 2009 and 2019.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Vacinas Combinadas , Animais , Anticorpos Antivirais , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/genética , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , Vacinas Combinadas/imunologia , Vacinas Sintéticas/imunologia
11.
PLoS One ; 17(2): e0263419, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35130308

RESUMO

Mucosal immunity plays a crucial role in controlling upper respiratory infections, including influenza. We established a quantitative ELISA to measure the amount of influenza virus-specific salivery IgA (sIgA) and salivary IgG (sIgG) antibodies using a standard antibody broadly reactive to the influenza A virus. We then analyzed saliva and serum samples from seven individuals infected with the A(H1N1)pdm09 influenza virus during the 2019-2020 flu seasons. We detected an early (6-10 days post-infection) increase of sIgA in five of the seven samples and a later (3-5 weeks) increase of sIgG in six of the seven saliva samples. Although the conventional parenteral influenza vaccine did not induce IgA production in saliva, vaccinated individuals with a history of influenza infection had higher basal levels of sIgA than those without a history. Interestingly, we observed sIgA and sIgG in an asymptomatic individual who had close contact with two influenza cases. Both early mucosal sIgA secretion and late systemically induced sIgG in the mucosal surface may protect against virus infection. Despite the small sample size, our results indicate that the saliva test system can be useful for analyzing upper mucosal immunity in influenza.


Assuntos
Imunidade nas Mucosas/fisiologia , Influenza Humana/imunologia , Saliva/imunologia , Adulto , Idoso , Anticorpos Antivirais/análise , Anticorpos Antivirais/metabolismo , Formação de Anticorpos , Estudos de Coortes , Feminino , História do Século XXI , Humanos , Imunoglobulina A/análise , Imunoglobulina A/metabolismo , Imunoglobulina A Secretora/análise , Imunoglobulina A Secretora/metabolismo , Imunoglobulina G/análise , Imunoglobulina G/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/uso terapêutico , Influenza Humana/diagnóstico , Influenza Humana/prevenção & controle , Japão , Estudos Longitudinais , Masculino , Valor Preditivo dos Testes , Prognóstico , Saliva/química , Saliva/metabolismo , Adulto Jovem
12.
Sci Rep ; 12(1): 2594, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173180

RESUMO

Complex glycans decorate viral surface proteins and play a critical role in virus-host interactions. Viral surface glycans shield vulnerable protein epitopes from host immunity yet can also present distinct "glycoepitopes" that can be targeted by host antibodies such as the potent anti-HIV antibody 2G12 that binds high-mannose glycans on gp120. Two recent publications demonstrate 2G12 binding to high mannose glycans on SARS-CoV-2 and select Influenza A (Flu) H3N2 viruses. Previously, our lab observed 2G12 binding and functional inhibition of a range of Flu viruses that include H3N2 and H1N1 lineages. In this manuscript, we present these data alongside structural analyses to offer an expanded picture of 2G12-Flu interactions. Further, based on the remarkable breadth of 2G12 N-glycan recognition and the structural factors promoting glycoprotein oligomannosylation, we hypothesize that 2G12 glycoepitopes can be defined from protein structure alone according to N-glycan site topology. We develop a model describing 2G12 glycoepitopes based on N-glycan site topology, and apply the model to identify viruses within the Protein Data Bank presenting putative 2G12 glycoepitopes for 2G12 repurposing toward analytical, diagnostic, and therapeutic applications.


Assuntos
Anticorpos Monoclonais/metabolismo , Anticorpos Amplamente Neutralizantes/metabolismo , Anticorpos Anti-HIV/metabolismo , Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Modelos Imunológicos , SARS-CoV-2/imunologia , Animais , Cães , Reposicionamento de Medicamentos , Epitopos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/metabolismo , Humanos , Vírus da Influenza A Subtipo H1N1/metabolismo , Vírus da Influenza A Subtipo H3N2/metabolismo , Células Madin Darby de Rim Canino , Terapia de Alvo Molecular , Testes de Neutralização , Polissacarídeos/metabolismo
13.
Cells ; 11(3)2022 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-35159296

RESUMO

The global outbreak of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is still ongoing, as is research on the molecular mechanisms underlying cellular infection by coronaviruses, with the hope of developing therapeutic agents against this pandemic. Other important respiratory viruses such as 2009 pandemic H1N1 and H7N9 avian influenza virus (AIV), influenza A viruses, are also responsible for a possible outbreak due to their respiratory susceptibility. However, the interaction of these viruses with host cells and the regulation of post-transcriptional genes remains unclear. In this study, we detected and analyzed the comparative transcriptome profiling of SARS-CoV-2, panH1N1 (A/California/07/2009), and H7N9 (A/Shanghai/1/2013) infected cells. The results showed that the commonly upregulated genes among the three groups were mainly involved in autophagy, pertussis, and tuberculosis, which indicated that autophagy plays an important role in viral pathogenicity. There are three groups of commonly downregulated genes involved in metabolic pathways. Notably, unlike panH1N1 and H7N9, SARS-CoV-2 infection can inhibit the m-TOR pathway and activate the p53 signaling pathway, which may be responsible for unique autophagy induction and cell apoptosis. Particularly, upregulated expression of IRF1 was found in SARS-CoV-2, panH1N1, and H7N9 infection. Further analysis showed SARS-CoV-2, panH1N1, and H7N9 infection-induced upregulation of lncRNA-34087.27 could serve as a competitive endogenous RNA to stabilize IRF1 mRNA by competitively binding with miR-302b-3p. This study provides new insights into the molecular mechanisms of influenza A virus and SARS-CoV-2 infection.


Assuntos
COVID-19/imunologia , Imunidade/imunologia , Vírus da Influenza A Subtipo H1N1/imunologia , Subtipo H7N9 do Vírus da Influenza A/imunologia , Influenza Humana/imunologia , RNA/imunologia , Transcriptoma/imunologia , Células A549 , Animais , COVID-19/genética , COVID-19/virologia , Células HEK293 , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade/genética , Vírus da Influenza A Subtipo H1N1/fisiologia , Subtipo H7N9 do Vírus da Influenza A/fisiologia , Influenza Humana/genética , Influenza Humana/virologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Fator Regulador 1 de Interferon/metabolismo , MicroRNAs/genética , MicroRNAs/imunologia , MicroRNAs/metabolismo , Pandemias/prevenção & controle , RNA/genética , RNA/metabolismo , RNA Longo não Codificante/genética , RNA Longo não Codificante/imunologia , RNA Longo não Codificante/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/imunologia , RNA Mensageiro/metabolismo , RNA-Seq/métodos , SARS-CoV-2/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/imunologia , Transcriptoma/genética
14.
Front Immunol ; 13: 782198, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35185881

RESUMO

Misunderstanding temporal coincidence of adverse events during mass vaccination and invalid assessment of possible safety concerns have negative effects on immunization programs, leading to low immunization coverage. We conducted this systematic review and meta-analysis to identify the incidence rates of GBS that are temporally associated with viral vaccine administration but might not be attributable to the vaccines. By literature search in Embase and PubMed, we included 48 publications and 2,110,441,600 participants. The pooled incidence rate of GBS was 3.09 per million persons (95% confidence interval [CI]: 2.67 to 3.51) within six weeks of vaccination, equally 2.47 per 100,000 person-year (95%CI: 2.14 to 2.81). Subgroup analyses illustrated that the pooled rates were 2.77 per million persons (95%CI: 2.47 to 3.07) for individuals who received the influenza vaccine and 2.44 per million persons (95%CI: 0.97 to 3.91) for human papillomavirus (HPV) vaccines, respectively. Our findings evidence the GBS-associated safety of virus vaccines. We present a reference for the evaluation of post-vaccination GBS rates in mass immunization campaigns, including the SARS-CoV-2 vaccine.


Assuntos
Vacinas contra COVID-19/efeitos adversos , Síndrome de Guillain-Barré/epidemiologia , Vacinas contra Influenza/efeitos adversos , Vacinação em Massa/efeitos adversos , Vacinas contra Papillomavirus/efeitos adversos , Alphapapillomavirus/imunologia , COVID-19/prevenção & controle , Vacinas contra COVID-19/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/prevenção & controle , Infecções por Papillomavirus/prevenção & controle , Vacinas contra Papillomavirus/imunologia , Vigilância da População , SARS-CoV-2/imunologia
15.
Viruses ; 14(2)2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35215989

RESUMO

It has been established that blood vessels are a target for influenza virus; however, the mechanism by which virus affects the cardiovascular system remains unknown. The aim of the study is the identification of histological changes and changes in the functional activity of the pulmonary and mesenteric blood vessels of Wistar rats. Wistar rats were intranasally infected with the influenza A(H1N1)pdm09 virus. At 24 and 96 h post infection (hpi), histopathological changes were observed in lung tissues with the absence of histological changes in mesenteric tissues. The functional activity of pulmonary and mesenteric arteries was determined using wire myography. In pulmonary arteries, there was a tendency towards an increase in integral response to the vasodilator and a decrease in the integral response to the vasoconstrictor at 24 hpi (compared with control). At 96 hpi, a tendency towards a decrease in the integral response to the vasoconstrictor persisted, while the response to acetylcholine was slightly increased. The functional activity of the mesenteric blood vessels was inverted: a significant decrease in the integral response to the vasodilator and an increase in the response to the vasoconstrictor at 24 hpi were observed; at 96 hpi, the integral response to the vasoconstrictor persisted, while the response to the vasodilator remained significantly reduced. Obtained data indicate the development of endothelial dysfunction in non-lethal and clinically non-severe experimental influenza virus infection.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Pulmão/patologia , Artérias Mesentéricas/patologia , Infecções por Orthomyxoviridae/patologia , Células Epiteliais Alveolares/virologia , Animais , Imuno-Histoquímica , Pulmão/virologia , Masculino , Artérias Mesentéricas/virologia , Miografia , Infecções por Orthomyxoviridae/complicações , Infecções por Orthomyxoviridae/virologia , Ratos , Ratos Wistar
16.
Viruses ; 14(2)2022 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-35216022

RESUMO

Avian influenza virus remains a threat for humans, and vaccines preventing both avian and human influenza virus infections are needed. Since virus-like particles (VLPs) expressing single neuraminidase (NA) subtype elicited limited heterosubtypic protection, VLPs expressing multiple NA subtypes would enhance the extent of heterosubtypic immunity. Here, we generated avian influenza VLP vaccines displaying H5 hemagglutinin (HA) antigen with or without avian NA subtypes (N1, N6, N8) in different combinations. BALB/c mice were intramuscularly immunized with the VLPs to evaluate the resulting homologous and heterosubtypic immunity upon challenge infections with the avian and human influenza viruses (A/H5N1, A/H3N2, A/H1N1). VLPs expressing H5 alone conferred homologous protection but not heterosubtypic protection, whereas VLPs co-expressing H5 and NA subtypes elicited both homologous and heterosubtypic protection against human influenza viruses in mice. We observed that VLP induced neuraminidase inhibitory activities (NAI), virus-neutralizing activity, and virus-specific antibody (IgG, IgA) responses were strongly correlated with the number of different NA subtype expressions on the VLPs. VLPs expressing all 3 NA subtypes resulted in the highest protection, indicated by the lowest lung titer, negligible body weight changes, and survival in immunized mice. These results suggest that expressing multiple neuraminidases in avian HA VLPs is a promising approach for developing a universal influenza A vaccine against avian and human influenza virus infections.


Assuntos
Vírus da Influenza A Subtipo H1N1/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Virus da Influenza A Subtipo H5N1/imunologia , Neuraminidase/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vacinas de Partículas Semelhantes a Vírus/imunologia , Animais , Anticorpos Antivirais/imunologia , Feminino , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H3N2/genética , Vacinas contra Influenza/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Neuraminidase/genética , Análise de Sobrevida , Vacinação , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Vacinas de Partículas Semelhantes a Vírus/genética
17.
Viruses ; 14(2)2022 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-35216034

RESUMO

Involvement of macrophages in the SARS-CoV-2-associated cytokine storm, the excessive secretion of inflammatory/anti-viral factors leading to the acute respiratory distress syndrome (ARDS) in COVID-19 patients, is unclear. In this study, we sought to characterize the interplay between the virus and primary human monocyte-derived macrophages (MDM). MDM were stimulated with recombinant IFN-α and/or infected with either live or UV-inactivated SARS-CoV-2 or with two reassortant influenza viruses containing external genes from the H1N1 PR8 strain and heterologous internal genes from a highly pathogenic avian H5N1 or a low pathogenic human seasonal H1N1 strain. Virus replication was monitored by qRT-PCR for the E viral gene for SARS-CoV-2 or M gene for influenza and TCID50 or plaque assay, and cytokine levels were assessed semiquantitatively with qRT-PCR and a proteome cytokine array. We report that MDM are not susceptible to SARS-CoV-2 whereas both influenza viruses replicated in MDM, albeit abortively. We observed a modest cytokine response in SARS-CoV-2 exposed MDM with notable absence of IFN-ß induction, which was instead strongly induced by the influenza viruses. Pre-treatment of MDM with IFN-α enhanced proinflammatory cytokine expression upon exposure to virus. Together, the findings concur that the hyperinflammation observed in SARS-CoV-2 infection is not driven by macrophages.


Assuntos
Inflamação/virologia , Macrófagos/imunologia , Macrófagos/virologia , SARS-CoV-2/imunologia , Replicação Viral/genética , Linhagem Celular , Linhagem Celular Tumoral , Células Cultivadas , Citocinas/análise , Citocinas/imunologia , Humanos , Vírus da Influenza A Subtipo H1N1/genética , Vírus da Influenza A Subtipo H1N1/imunologia , Virus da Influenza A Subtipo H5N1/genética , Virus da Influenza A Subtipo H5N1/imunologia , Interferon-alfa/farmacologia , Macrófagos/efeitos dos fármacos , Masculino , SARS-CoV-2/genética , SARS-CoV-2/fisiologia
18.
J Virol ; 96(6): e0187321, 2022 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-35107382

RESUMO

Given the current coronavirus disease 2019 (COVID-19) pandemic, coinfection of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV) is a major concern for public health. However, the immunopathogenic events occurring with coinfections of SARS-CoV-2 and IAV remain unclear. Here, we report the pathogenic and immunological consequences of SARS-CoV-2 and IAV H1N1 coinfection in the K18-hACE2 transgenic mouse model. Compared with a single infection with SARS-CoV-2 or IAV, coinfections not only prolonged the primary virus infection period but also increased immune cell infiltration and inflammatory cytokine levels in bronchoalveolar lavage fluid leading to severe pneumonia and lung damage. Moreover, coinfections caused severe lymphopenia in peripheral blood, resulting in reduced total IgG, neutralizing antibody titers, and CD4+ T cell responses against each virus. This study sheds light on the immunopathogenesis of SARS-CoV-2 and IAV coinfection, which may guide the development of effective therapeutic strategies for the treatment of patients coinfected with these viruses. IMPORTANCE The cocirculation of influenza virus merging with the COVID-19 pandemic raises a potentially severe threat to public health. Recently, increasing numbers of SARS-CoV-2 and influenza virus coinfection have been reported from many countries. It is a worrisome issue that SARS-CoV-2 coinfection with other pathogens may worsen the clinical outcome and severity of COVID-19 and increase fatality. Here, we evaluated SARS-CoV-2 and IAV coinfection using the K18-hACE2 mouse model. Coinfected mice exhibited increased mortality with prolonged IAV shedding. Furthermore, coinfected mice showed a higher level of cytokines and chemokines than a single infection condition. Interestingly, our data show that coinfected mice showed significantly fewer virus-specific and neutralizing antibodies than the mice with a single infection. Overall, this study suggests that coinfection aggravates viral pathology by impaired neutralizing antibody response.


Assuntos
COVID-19 , Coinfecção , Vírus da Influenza A Subtipo H1N1 , Infecções por Orthomyxoviridae , SARS-CoV-2 , Animais , Anticorpos Neutralizantes , Linfócitos T CD4-Positivos/imunologia , COVID-19/imunologia , Coinfecção/imunologia , Modelos Animais de Doenças , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Camundongos , Infecções por Orthomyxoviridae/imunologia , SARS-CoV-2/imunologia , Índice de Gravidade de Doença
19.
J Virol ; 96(5): e0172521, 2022 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-34985999

RESUMO

Influenza A virus (IAV) causes respiratory disease in swine and humans. Vaccines are used to prevent influenza illness in both populations but must be frequently updated due to rapidly evolving strains. Mismatch between the circulating strains and the strains contained in vaccines may cause loss of efficacy. Whole inactivated virus (WIV) vaccines with adjuvant, utilized by the swine industry, are effective against antigenically similar viruses; however, vaccine-associated enhanced respiratory disease (VAERD) may happen when the WIV is antigenically mismatched with the infecting virus. VAERD is a repeatable model in pigs, but had yet to be experimentally demonstrated in other mammalian species. We recapitulated VAERD in ferrets, a standard benchmark animal model for studying human influenza infection, in a direct comparison to VAERD in pigs. Both species were vaccinated with WIV with oil-in-water adjuvant containing a δ-1 H1N2 (1B.2.2) derived from the pre-2009 human seasonal lineage, then challenged with a 2009 pandemic H1N1 (H1N1pdm09, 1A.3.3.2) 5 weeks after vaccination. Nonvaccinated and challenged groups showed typical signs of influenza disease, but the mismatched vaccinated and challenged pigs and ferrets showed elevated clinical signs, despite similar viral loads. VAERD-affected pigs exhibited a 2-fold increase in lung lesions, while VAERD-affected ferrets showed a 4-fold increase. Similar to pigs, antibodies from VAERD-affected ferrets preferentially bound to the HA2 domain of the H1N1pdm09 challenge strain. These results indicate that VAERD is not limited to pigs, as demonstrated here in ferrets, and the need to consider VAERD when evaluating new vaccine platforms and strategies. IMPORTANCE We demonstrated the susceptibility of ferrets, a laboratory model species for human influenza A virus research, to vaccine-associated enhanced respiratory disease (VAERD) using an experimental model previously demonstrated in pigs. Ferrets developed clinical characteristics of VAERD very similar to that in pigs. The hemagglutinin (HA) stalk is a potential vaccine target to develop more efficacious, broadly reactive influenza vaccine platforms and strategies. However, non-neutralizing antibodies directed toward a conserved epitope on the HA stalk induced by an oil-in-water, adjuvanted, whole influenza virus vaccine were previously shown in VAERD-affected pigs and were also identified here in VAERD-affected ferrets. The induction of VAERD in ferrets highlights the potential risk of mismatched influenza vaccines for humans and the need to consider VAERD when designing and evaluating vaccine strategies.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Vacinas contra Influenza , Infecções por Orthomyxoviridae , Doenças Respiratórias , Animais , Anticorpos Antivirais , Modelos Animais de Doenças , Furões , Humanos , Vírus da Influenza A Subtipo H1N1/imunologia , Vacinas contra Influenza/efeitos adversos , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/normas , Infecções por Orthomyxoviridae/imunologia , Infecções por Orthomyxoviridae/virologia , Doenças Respiratórias/imunologia , Suínos , Vacinas de Produtos Inativados/imunologia
20.
Viruses ; 14(1)2022 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-35062292

RESUMO

The NLRP3 inflammasome consists of NLRP3, ASC, and pro-caspase-1 and is an important arm of the innate immune response against influenza A virus (IAV) infection. Upon infection, the inflammasome is activated, resulting in the production of IL-1ß and IL-18, which recruits other immune cells to the site of infection. It has been suggested that in the presence of stress molecules such as nigericin, the trans-Golgi network (TGN) disperses into small puncta-like structures where NLRP3 is recruited and activated. Here, we investigated whether IAV infection could lead to TGN dispersion, whether dispersed TGN (dTGN) is responsible for NLRP3 inflammasome activation, and which viral protein is involved in this process. We showed that the IAV causes dTGN formation, which serves as one of the mechanisms of NLRP3 inflammasome activation in response to IAV infection. Furthermore, we generated a series of mutant IAVs that carry mutations in the M2 protein. We demonstrated the M2 proton channel activity, specifically His37 and Trp41 are pivotal for the dispersion of TGN, NLRP3 conformational change, and IL-1ß induction. The results revealed a novel mechanism behind the activation and regulation of the NLRP3 inflammasome in IAV infection.


Assuntos
Inflamassomos/imunologia , Vírus da Influenza A Subtipo H1N1/fisiologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Rede trans-Golgi/fisiologia , Animais , Proteínas Adaptadoras de Sinalização CARD/metabolismo , Caspase 1/metabolismo , Linhagem Celular , Células Cultivadas , Cães , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H1N1/imunologia , Interleucina-1beta/biossíntese , Mutação , Suínos , Proteínas da Matriz Viral/química , Proteínas da Matriz Viral/genética , Proteínas da Matriz Viral/metabolismo , Proteínas Viroporinas/química , Proteínas Viroporinas/genética , Proteínas Viroporinas/metabolismo , Rede trans-Golgi/ultraestrutura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...